Overview concepts of data input for building CO2 sequestration networks and vectors

20210910WA_data_input_CVM_network and vectors

The simplified version of the graph is what we are using as the 'circularity economy' diagram, which shows the carbon values as distances from a circle.

requires data that describes the supply chain and the disposal chain

how to conceptualize and encode the steps in a supply-destruction chain model

From the consumption vectors, we can make this graph,
which shows the inputs of carbon on the production 'circle' of blueJeans.

The circle is the the beginning to the end of the blueJeans product.

Note the addition of the center node, and the requirement to sum all the component vectors.

Yakult Manufacturing

We can make a realistic graph, from the inputs of carbon on the production network of Yakult.

This network is not circular.

Re-flow the graph, the links are unchanged, just visual difference.

Insert new nodes at junctions in the chain.

Re-flow the graph again, the links are unchanged (with the addition of nodes for junctions), just visual difference.

Note the insertion of nodes at junctions.

Note the deletion of links after junctions.

Note the deletion of links after junctions.

Segmentation of consumption wectors
 into smaller pieces ('sentences').

get consumption vectors (CV) from the entropy graph

How To:

Get consumption vectors (CV) from the entropy graph

Use this tool:
http://www.entropynetwork.com/dóc2/?
jsonURL=\%2Fpub\%2Fdata\%2Féco2\%2F20210910023129-jesse-yakult-CVM-diverge6-seǵment2-
diagram.json\&xres=2048\&yres=2048\&imageURL=

1] Click the observer-node that observes the chain (CV).
2] Now click "findVector" button that appears near the "Set Text"., box.
3] The text of the vector as a sentence will appear in the output box.
4] The top level CV must be made last, make that by hand.
The findVector function can not be used to find it because the names are all duplicates.

The findVector function (in entropynetwork) can not be used to find it, technically because the names are all duplicates.
sugarcane1 sugar1 syrup1 liquiverter1 preparationTank1 balanceTank1 htstUnit1 storageTank1 concentrateBalanceTank1 blendingMachine1 surgeTank1 filterMachine1 cappingSealingMachine shrinkPackagingMachine1 reshrinkPackagingMachine1 coldStorage1 yakult1
lactobacillus seedTank1 cultureTank1 homogenizer1 storageTank1 concentrateBalanceTank1 blendingMachine1 surgeTank1 filterMachine1 cappingSealingMachine1 shrinkPackagingMachine1 reshrinkPackagingMachine1 coldStorage1 yakult1
cow1 nonfatMilk1 liquiverter2 preperationTank2 balanceTank2 htstUnit2 cultureTank1 homogenizer storageTank1 concentrateBalanceTank1 blendingMachine1 surgeTank1 filterMachine1 cappingSealingMachine1 shrinkPackagingMachine1 reshrinkPackagingMachine1 coldStorage1
yakult1
naturalflavors homogenizer1 storageTank1 concentrateBalanceTank1 blendingMachine1 surgeTank filterMachine1 cappingSealingMachine1 shrinkPackagingMachine1 reshrinkPackagingMachine1 coldStorage 1 yakult1
petroleum1 polystyreneResin1 injectionBlowMouldingMachine1 bottleStorageTank1 bottleSelector printerLabelerMachine1 filterMachine1 cappingSealingMachine1 shrinkPackagingMachine1 reshrinkPackagingMachine1 coldStorage1 yakult1
soybean1 soybeanOil1 ink1 printerLabelerMachine1 filterMachine1 cappingSealingMachine1 shrinkPackagingMachine1 reshrinkPackagingMachine1 coldStorage1 yakult1

From the consumption vectors, we can make this graph,
which shows the inputs of carbon on the production 'circle' of Yakult.

The circle is the the beginning to the end of the Yakult product.

water1 softWaterTank1 waterTank1 waterBalanceTank1 blendingMachine1 surgeTank1 filterMachine1 cappingSealingMachine1 shrinkPackagingMachine1 reshrinkPackagingMachine1 coldStorage1 yakult1
sugarcane1 sugar1 syrup1 liquiverter1 preparationTank1 balanceTank1 htstUnit1 storageTank1 concentrateBalanceTank1 blendingMachine1 surgeTank1 filterMachine1 cappingSealingMachine1 shrinkPackagingMachine1 reshrinkPackagingMachine1 coldStorage1 yakult1
lactobacillus seedTank1 cultureTank1 homogenizer1 storageTank1 concentrateBalanceTank1 blendingMachine1 surgeTank1 filterMachine1 cappingSealingMachine1 shrinkPackagingMachine1 reshrinkPackagingMachine1 coldStorage1 yakult1
cow1 nonfatMilk1 liquiverter2 preperationTank2 balanceTank2 htstUnit2 cultureTank1 homogenizer1 storageTank1 concentrateBalanceTank1 blendingMachine1 surgeTank1 filterMachine1 cappingSealingMachine1 shrinkPackagingMachine1 reshrinkPackagingMachine1 coldStorage1 yakult1
naturalflavors homogenizer1 storageTank1 concentrateBalanceTank1 blendingMachine1 surgeTank1 filterMachine1 cappingSealingMachine1 shrinkPackagingMachine1 reshrinkPackagingMachine1 coldStorage1 yakult1
petroleum1 polystyreneResin1 injectionBlowMouldingMachine1 bottleStorageTank1 bottleSelector1 printerLabelerMachine1 filterMachine1 cappingSealingMachine1 shrinkPackagingMachine1 reshrinkPackagingMachine1 coldStorage1 yakult1
soybean1 soybeanOil1 ink1 printerLabelerMachine1 filterMachine1 cappingSealingMachine1 shrinkPackagingMachine1 reshrinkPackagingMachine1 coldStorage1 yakult1
water1 softWaterTank1 waterTank1 waterBalanceTank1 blendingMachine1 surgeTank1 filterMachine1 cappingSealingMachine1 shrinkPackagingMachine1 reshrinkPackagingMachine1 coldStorage1 yakult1

http://www.entropynetwork.com/text/

consumptionVectorO
This is text inside _enc_
Ajax Load doEnc disp displaySentencesReverse displayindSentencesReverse
shrinkPackagingMachine1 reshrinkPackagingMachine 1 coldStorage1 yakult1
petroleum1
polystyreneResin1
injectionBlowMouldingMac hine1 bottleStorageTank1 bottleSelector1
printerLabelerMachine1 filterMachine1
cappingSealingMachine1 shrinkPacknginMachinei reshrinkPackagingMachine 1 coldStorage1 yakult1
soybean1 soybeanOil1 ink1
printerLabelerMachine1 filterMachine1
cappingSealingMachine1 shrinkPackagingMachine1 reshrinkPackagingMachine 1 coldStorage1 yakult1

"watertank1|2", "waterbalancetan k1|3", "blendingmachine1|4", "sur getank1|5", "filtermachine1|6"," cappingsealingmachine1|7", "shri nkpackagingmachine1|8","reshrin
kpackagingmachine1|9", "coldstor age1|10", "yakult1|11","sugarcan e1|12", "sugar1|13", "syrup1|14", "liquiverter1|15", "preparationt ank1|16", "balancetank1|17", "hts tunit1|18","storagetank1|19", "c
 culturetank1|23" "homogenizer1 24", "cow1|25", "nonfatmilk1|26", "liquiverter2|27", "preperationt ank2|28", balancetank2 29", hts tunit2|30", "naturalflavors|31", in1|33", "injectionblowmouldingm achine1|34", "bottlestoragetank1 terlabelermachine1|37", "soybeang

water1 0	
softwatertank1	1

watertank1 2 waterbalancetank13
blendingmachinel 4
filtermachine1
cappingsealingmachine1 7shrinkpackagingmachine1 8reshrinkpackagingmachine1
9
coldstorage 110
sugarcकne1sugar1 13syrup1 14preparationtank1
balancetank1 17
htstunit1 18
concentratebalancetank1 20
lactobacillus 21

22
water1 softwatertank1 watertank1 waterbalancetank1 blendingmachine1 surgetank1 filtermachine1 cappingsealingmachine1 shrinkpackagingmachine1 reshrinkpackagingmachine1 coldstorage1 yakult1. sugarcane1 sugar1 syrup1 liquiverter1 preparationtank1 balancetank1 htstunit1 storagetank1 concentratebalancetank1 blendingmachine1 surgetank1 filtermachine1 cappingsealingmachine1 shrinkpackagingmachine1 reshrinkpackagingmachine1 coldstorage1 yakult1.
lactobacillus seedtank1 culturetank1 homogenizer1 storagetank1
concentratebalancetank1

CO2 values

water11
softwatertank1 2
watertank1 23
waterbalancetank1 34
Symbol is a blendingmachine1 34label for an
surgetank1 ?object.
filtermachine1?
cappingsealingmachine1 $?$
shrinkpackagingmachine1 $?$
reshrinkpackagingmachine1 $?$
coldstorage1 ?
yakult1 $?$
sugarcane1 $?$
sugar1 $?$
syrup1 $?$
liquiverter1 ?
preparationtank1 ?
balancetank1 $?$
htstunit1 $?$

Naming: Machine + Protocol

20210909 Naming: Machine + Protocol
In production we may describe the actions of a machine, as in:
Machine + Protocol. In our model, instead of being domain restricted, we can use general terms, 'Object', and 'Behavior' of the object.

Object_Behavior
like this -
shrinkPackagingMachine1_StirFor37000ms
For non-machines, for example trees, Object_Behavior may be something like 'tree_grow', or for a human 'Person_DriveCar'.

The Symbols which we use, that represent positions in the chain, can only have one CO2 value. If an object may have multiple CO2 values, it is necessary to create multiple symbols. For example,

Person_DriveCar1
Person_DriveCar2

Symbol is a label for an object, a1 and the label for several b2 models of that object b1 b4
There are infinite objects, a33 models, and symbols.b78

provides a finite deterministic mapping of objects between model domains

There are infinite objects, models, and symbols.

However,

The model which encodes production-consumption chains requires a limited universe of symbols, at accomplish mapping a source to a target

object symbol
CO2 Value

All symbols must be unique of course.

CO2 values

water11
softwatertank1 2
watertank1 23
waterbalancetank1 34
Symbol is a blendingmachine1 34label for an
surgetank1 ?object.
filtermachine1?
cappingsealingmachine1 $?$
shrinkpackagingmachine1 $?$
reshrinkpackagingmachine1 $?$
coldstorage1 ?
yakult1 $?$
sugarcane1 $?$
sugar1 $?$
syrup1 $?$
liquiverter1 ?
preparationtank1 ?
balancetank1 $?$
htstunit1 $?$

Naming: Machine + Protocol

20210909 Naming: Machine + Protocol
In production we may describe the actions of a machine, as in:
Machine + Protocol. In our model, instead of being domain restricted, we can use general terms, 'Object', and 'Behavior' of the object.

Object_Behavior
like this -
shrinkPackagingMachine1_StirFor37000ms
For non-machines, for example trees, Object_Behavior may be something like 'tree_grow', or for a human 'Person_DriveCar'.

The Symbols which we use, that represent positions in the chain, can only have one CO2 value. If an object may have multiple CO2 values, it is necessary to create multiple symbols. For example,

Person_DriveCar1
Person_DriveCar2

